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 16.1 A Simple Logic Programming Language 

Example As an example of meta-linguistic abstraction, we develop a Lisp-based logic 
programming interpreter, using the unification algorithm from Section 
15.2. Like Prolog, our logic programs consist of a database of facts and 
rules in the predicate calculus. The interpreter processes queries (or goals) 
by unifying them against entries in the logic database. If a goal unifies with 
a simple fact, it succeeds; the solution is the set of bindings generated in 
the match. If it matches the head of a rule, the interpreter recursively 
attempts to satisfy the rule premise in a depth-first fashion, using the 
bindings generated in matching the head. On success, the interpreter prints 
the original goal, with variables replaced by the solution bindings. 

For simplicity’s sake, this interpreter supports conjunctive goals and 
implications: or and not are not defined, nor are features such as arithmetic, 
I/O, or the usual Prolog built-in predicates. Although we do not implement 
full Prolog, and the exhaustive nature of the search and absence of the cut 
prevent the proper treatment of recursive predicates, the shell captures the 
basic behavior of the logic programming languages. The addition to the 
interpreter of the other features just mentioned is an interesting exercise. 

Our logic programming interpreter supports Horn clauses, a subset of full 
predicate calculus (Luger 2009, Section 14.2). Well-formed formulae 
consist of terms, conjunctive expressions, and rules written in a Lisp-
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oriented syntax. A compound term is a list in which the first element is a 
predicate name and the remaining elements are the arguments. Arguments 
may be either constants, variables, or other compound terms. As in the 
discussion of unify, we represent variables as lists of two elements, the 
word var followed by the name of the variable. Examples of terms 
include: 

(likes bill music) 

(on block (var x)) 

(friend bill (father robert)) 

A conjunctive expression is a list whose first element is and and whose 
subsequent arguments are either simple terms or conjunctive expressions: 

(and (smaller david sarah) (smaller peter david)) 

(and (likes (var x) (var y))  

  (likes (var z) (var y))) 

(and (hand-empty)  

  (and (on block-1 block-2)  

    (on block-2 table))) 

Implications are expressed in a syntactically sweetened form that simplifies 
both their writing and recognition: 

(rule if <premise> then <conclusion>) 

where <premise> is either a simple or conjunctive proposition and 
<conclusion> is always a simple proposition. Examples include: 

(rule if (and (likes (var x) (var z)) 

            (likes (var y) (var z))) 

   then (friend (var x) (var y))) 
(rule if (and (size (var x) small) 

            (color (var x) red) 

            (smell (var x) fragrant)) 

   then (kind (var x) rose)) 
The logic database is a list of facts and rules bound to a global variable, 
*assertions*. We can define an example knowledge base of likes 
relationships by a call to setq (we could have used the function 
defvar): 

(setq *assertions* 

    ‘((likes george beer) 

    (likes george kate) 

    (likes george kids) 

    (likes bill kids) 

    (likes bill music) 

    (likes bill pizza) 

    (likes bill wine) 

    (rule if (and (likes (var x) (var z)) 

           (likes (var y) (var z))) 

        then (friend (var x) (var y))))) 
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The top level of the interpreter is a function, logic-shell, that reads 
goals and attempts to satisfy them against the logic database bound to 
*assertions*. Given the above database, logic-shell will have 
the following behavior, where comments follow the ;: 

> (logic-shell)                        ;Prompts with a ? 

?(likes bill (var x))      

(likes bill kids) 

(likes bill music) 

(likes bill pizza) 

(likes bill wine) 

?(likes george kate) 

(likes george kate) 

?(likes george taxes)            ;Failed query returns nothing. 

?(friend bill george) 

(friend bill george)      ;From (and(likes bill kids) 
                              ;(likes george kids)). 

?(friend bill roy)            ;roy not in knowledge base, fail. 

?(friend bill (var x)) 

(friend bill george)       ;From (and(likes bill kids) 
                               (likes george kids)). 

(friend bill bill)       ;From (and(likes bill kids) 
                                ;(likes bill kids)). 

(friend bill bill)      ;From (and(likes bill music) 
                               ;(likes bill music)). 

(friend bill bill)       ;From (and(likes bill pizza) 
                               ;(likes bill pizza)). 

(friend bill bill)       ;From (and(likes bill wine) 
                                ;(likes bill wine)). 

?quit 

bye 

> 

Before discussing the implementation of the logic programming 
interpreter, we introduce the stream data type. 

              16.2   Streams and Stream Processing 

 As the preceding example suggests, even a small knowledge base can 
produce complex behaviors. It is necessary not only to determine the truth 
or falsity of a goal but also to determine the variable substitutions that 
make that goal be true in the knowledge base. A single goal can match with 
different facts, producing different substitution sets; conjunctions of goals 
require that all conjuncts succeed and also that the variable bindings be 
consistent throughout. Similarly, rules require that the substitutions formed 
in matching a goal with a rule conclusion be made in the rule premise when 
it is solved. The management of these multiple substitution sets is the 
major source of complexity in the interpreter. Streams help address this 
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complexity by focusing on the movement of a sequence of candidate 
variable substitutions through the constraints defined by the logic database. 

A stream is a sequence of data objects. Perhaps the most common example of 
stream processing is a typical interactive program. The data from the keyboard 
are viewed as an endless sequence of characters, and the program is organized 
around reading and processing the current character from the input stream. 
Stream processing is a generalization of this idea: streams need not be 
produced by the user; they may also be generated and modified by functions. 
A generator is a function that produces a continuing stream of data objects. A 
map function applies some function to each of the elements of a stream. A filter 
eliminates selected elements of a stream according to the constraints of some 
predicate. 

The solutions returned by an inference engine may be represented as a stream 
of different variable substitutions under which a goal follows from a 
knowledge base. The constraints defined by the knowledge base are used to 
modify and filter a stream of candidate substitutions, producing the result. 
Consider, for example, the conjunctive goal (using the logic database from the 
preceding section): 

(and (likes bill (var z)) 

     (likes george (var z))) 

The stream-oriented view regards each of the conjuncts in the expression as a 
filter for a stream of substitution sets. Each set of variable substitutions in the 
stream is applied to the conjunct and the result is matched against the 
knowledge base. If the match fails, that set of substitutions is eliminated from 
the stream; if it succeeds, the match may create new sets of substitutions by 
adding new bindings to the original substitution set. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16.1 A stream of variable substitutions filtered through 
conjunctive subgoals. 

Figure 16.1 illustrates the stream of substitutions passing through this 
conjunctive goal. It begins with a stream of candidate substitutions containing 
only the empty substitution set and grows after the first proposition matches 
against multiple entries in the database. It then shrinks to a single substitution 
set as the second conjunct eliminates substitutions that do not allow (likes 
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george (var z)) to succeed. The resulting stream, ((((var z) . 
kids))), contains the only variable substitution that allows both subgoals in 
the conjunction to succeed in the knowledge base. 
As this example illustrates, a goal and a single set of substitutions may 
generate several new substitution sets, one for each match in the 
knowledge base. Alternatively, a goal will eliminate a substitution set from 
the stream if no match is found. The stream of substitution sets may grow 
and shrink as it passes through a series of conjuncts. 

The basis of stream processing is a set of functions to create, augment, and 
access the elements of a stream. We can define a simple set of stream 
functions using lists and the standard list manipulators. The functions that 
constitute a list-based implementation of the stream data type are: 

                ;cons-stream adds a new first element to a stream. 

(defun cons-stream (element stream)  

  (cons element stream)) 

              ;head-stream returns the first element of the stream. 

(defun head-stream (stream) (car stream)) 

          ;tail-stream returns the stream with first element deleted. 

(defun tail-stream (stream) (cdr stream)) 

                  ;empty-stream-p is true if the stream is empty. 

(defun empty-stream-p (stream) (null stream)) 

                 ;make-empty-stream creates an empty stream. 

(defun make-empty-stream ( ) nil) 

                      ;combine-stream appends two streams. 

(defun combine-streams (stream1 stream2) 

    (cond ((empty-stream-p stream1) stream2) 

      (t (cons-stream (head-stream stream1) 

        (combine-streams  

          (tail-stream stream 1)  

       stream2))))) 

Although the implementation of streams as lists does not allow the full 
power of stream-based abstraction, the definition of a stream data type 
helps us to view the program from a data flow point of view. For many 
problems, such as the logic programming interpreter of Section 16.3, this 
provides the programmer with a powerful tool for organizing and 
simplifying the code. In Section 17.1 we discuss some limitations of this 
list-based implementation of streams and present an alternative approach  
using streams with delayed evaluation. 

 16.3  A Stream-Based Logic Programming Interpreter 

 We invoke the interpreter through a function called logic-shell, a 
straightforward variation of the read-eval-print loop discussed in 
Section 15.3. After printing a prompt, “?”, it reads the next s-expression 
entered by the user and binds it to the symbol goal. If goal is equal to 
quit, the function halts; otherwise, it calls solve to generate a stream of 
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substitution sets that satisfy the goal. This stream is passed to print-
solutions, which prints the goal with each of these different 
substitutions. The function then recurs. logic-shell is defined: 

(defun logic-shell ( ) 

    (print ‘? ) 

    (let ((goal (read))) 

       (cond ((equal goal ‘quit) ‘bye) 

           (t (print-solutions goal  

            (solve goal nil))  

             (terpri) 

            (logic-shell))))) 

solve is the heart of the interpreter. solve takes a goal and a set of 
substitutions and finds all solutions that are consistent with the knowledge 
base. These solutions are returned as a stream of substitution sets; if there 
are no matches, solve returns the empty stream. From the stream 
processing point of view, solve is a source, or generator, for a stream of 
solutions. solve is defined by: 

(defun solve (goal substitutions) 

    (declare (special *assertions*)) 

    (if (conjunctive-goal-p goal) 

      (filter-through-conj-goals (body goal) 

         (cons-stream substitutions  

            (make-empty-stream))) 

      (infer goal substitutions *assertions*))) 

The declaration special tells the Lisp compiler that *assertions* 
is a special, or global, variable and should be bound dynamically in the 
environment in which solve is called. (This special declaration is not 
required in many modern versions of Lisp.) 

solve first tests whether the goal is a conjunction; if it is, solve calls 
filter-through-conj-goals to perform the filtering described in 
Section 16.2. If goal is not a conjunction, solve assumes it is a simple 
goal and calls infer, defined below, to solve it against the knowledge 
base. solve calls filter-through-conj-goals with the body of 
the conjunction (i.e., the sequence of conjuncts with the and operator 
removed) and a stream that contains only the initial substitution set. The 
result is a stream of substitutions representing all of the solutions for this 
goal. We define filter-through-conj-goals by: 

(defun filter-through-conj-goals (goals    
        substitution-stream) 

    (if (null goals) substitution-stream 

  (filter-through-conj-goals (cdr goals) 

          (filter-through-goal (car goals)  

      substitution-stream)))) 

If the list of goals is empty, the function halts, returning 
substitution-stream unchanged. Otherwise, it calls filter-
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through-goal to filter substitution-stream through the first 
goal on the list. It passes this result on to a recursive call to filter-
through-conj-goals with the remainder of the goal list. Thus, the 
stream is passed through the goals in left-to-right order, growing or 
shrinking as it passes through each goal. 

filter-through-goal takes a single goal and uses it as a filter to the 
stream of substitutions. This filtering is done by calling solve with the 
goal and the first set of substitutions in the substitution-stream. 
The result of this call to solve is a stream of substitutions resulting from 
matches of the goal against the knowledge base. This stream will be empty 
if the goal does not succeed under any of the substitutions contained in the 
stream, or it may contain multiple substitution sets representing alternative 
bindings. This stream is combined with the result of filtering the tail of the 
input stream through the same goal: 

(defun filter-through-goal  
      (goal substitution-stream) 

    (if (empty-stream-p substitution-stream) 

  (make-empty-stream) 

  (combine-streams 

      (solve goal  

      (head-stream substitution-stream)) 

      (filter-through-goal goal  

               (tail-stream substitution-stream))))) 

To summarize, filter-through-conj-goals passes a stream of 
substitution sets through a sequence of goals, and filter-through-
goal filters substitution-stream through a single goal. A 
recursive call to solve solves the goal under each substitution set. 

Whereas solve handles conjunctive goals by calling filter-
through-conj-goals, simple goals are handled by infer, defined 
next, which takes a goal and a set of substitutions and finds all solutions 
in the knowledge base, kb, infer’s third parameter, a database of logic 
expressions. When solve first calls infer, it passes the knowledge base 
contained in the global variable *assertions*. infer searches kb 
sequentially, trying the goal against each fact or rule conclusion. 

The recursive implementation of infer builds the backward-chaining 
search typical of Prolog and many expert system shells. It first checks 
whether kb is empty, returning an empty stream if it is. Otherwise, it binds 
the first item in kb to the symbol assertion using a let* block. let* is 
like let except it is guaranteed to evaluate the initializations of its local 
variables in sequentially nested scopes, i.e., it provides an order to the 
binding and visibility of preceding variables. It also defines the variable 
match: if assertion is a rule, let* initializes match to the substitutions 
required to unify the goal with the conclusion of the rule; if assertion 
is a fact, let* binds match to those substitutions required to unify 
assertion with goal. After attempting to unify the goal with the first 
element of the knowledge base, infer tests whether the unification 
succeeded. If it failed to match, infer recurs, attempting to solve the 
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goal using the remainder of the knowledge base. If the unification 
succeeded and assertion is a rule, infer calls solve on the premise of 
the rule using the augmented set of substitutions bound to match. 
combine-stream joins the resulting stream of solutions to that 
constructed by calling infer on the rest of the knowledge base. If 
assertion is not a rule, it is a fact; infer adds the solution bound to 
match to those provided by the rest of the knowledge base. Note that 
once the goal unifies with a fact, it is solved; this terminates the search. We 
define infer: 

(defun infer (goal substitutions kb) 

 (if (null kb) 

  (make-empty-stream) 

  (let* ((assertion  

        (rename-variables (car kb))) 

      (match (if (rulep assertion) 

        (unify goal (conclusion assertion)  
       substitutions) 

     (unify goal assertion substitutions)))) 

        (if (equal match ‘failed) 

        (infer goal substitutions (cdr kb)) 

     (if (rulep assertion) 

          (combine-streams 

           (solve (premise assertion) match) 

      (infer goal substitutions  

                (cdr kb))) 

      (cons-stream match  

            (infer goal substitutions  

                                (cdr kb)))))))) 

Before the first element of kb is bound to assertion, it is passed to 
rename-variables to give each variable a unique name. This 
prevents name conflicts between the variables in the goal and those in the 
knowledge base entry; e.g., if (var x) appears in a goal, it must be 
treated as a different variable than a (var x) that appears in the rule or 
fact. (This notion of standardizing variables apart is an important 
component of automated reasoning in general. Luger (2009, Section 14.2) 
demonstrates this in the context of resolution refutation systems). The 
simplest way to handle this is by renaming all variables in assertion 
with unique names. We define rename-variables at the end of this 
section. 

This completes the implementation of the core of the logic programming 
interpreter. To summarize, solve is the top-level function and generates 
a stream of substitution sets (substitution-stream) that represent 
solutions to the goal using the knowledge base. filter-through-
conj-goals solves conjunctive goals in a left-to-right order, using each 
goal as a filter on a stream of candidate solutions: if a goal cannot be 
proven true against the knowledge base using a substitution set in the 
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stream, filter-through-conj-goals eliminates those 
substitutions from the stream. If the goal is a simple literal, solve calls 
infer to generate a stream of all substitutions that make the goal succeed 
against the knowledge base. Like Prolog, our logic programming 
interpreter takes a goal and finds all variable bindings that make it true 
against a given knowledge base. 

All that remain are functions for accessing components of knowledge base 
entries, managing variable substitutions, and printing solutions. print-
solutions takes as arguments a goal and a substitution-
stream. For each set of substitutions in the stream, it prints the goal with 
variables replaced by their bindings in the substitution set. 

(defun print-solutions (goal substitution-stream) 

   (cond ((empty-stream-p substitution-stream)  

        nil) 

       (t (print (apply-substitutions goal  

                 (head-stream  

      substitution-stream))) 

       (terpri) 

       (print-solutions goal  

               (tail-stream substitution-stream))))) 

The replacement of variables with their values under a substitution set is 
done by apply-substitutions, which does a car-cdr recursive tree 
walk on a pattern. If the pattern is a constant (is-constant-p), it is 
returned unchanged. If it is a variable (varp), apply-
substitutions tests if it is bound. If it is unbound, the variable is 
returned; if it is bound, apply-substitutions calls itself recursively 
on the value of this binding. Note that the binding value may be either a 
constant, another variable, or a pattern of arbitrary complexity: 

(defun apply-substitutions  

      (pattern substitution-list) 

  (cond ((is-constant-p pattern) pattern) 

   ((varp pattern) 

      (let ((binding  

                      (get-binding pattern  

       substitution-list))) 

    (cond (binding (apply-substitutions  

                      (get-binding-value binding)  

        substitution-list)) 

      (t pattern)))) 

     (t (cons (apply-substitutions  

           (car pattern)  

      substitution-list)    

            (apply-substitutions (cdr pattern)  

      substitution-list))))) 
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infer renamed the variables in each knowledge base entry before 
matching it with a goal. This is necessary, as noted above, to prevent 
undesired name collisions in matches. For example, the goal (p a (var 
x)) should match with the knowledge base entry (p (var x) b), 
because the scope of each (var x) is restricted to a single expression. As 
unification is defined, however, this match will not occur. Name collisions 
are prevented by giving each variable in an expression a unique name. The 
basis of our renaming scheme is a Common Lisp built-in function called 
gensym that takes no arguments; each time it is called, it returns a unique 
symbol consisting of a number preceded by #:G. For example: 

> (gensym) 

#:G4 

> (gensym) 

#:G5 

> (gensym) 

#:G6 

> 

Our renaming scheme replaces each variable name in an expression with 
the result of a call to gensym. rename-variables performs certain 
initializations (described below) and calls rename-rec to make 
substitutions recursively in the pattern. When a variable (varp) is 
encountered, the function rename is called to return a new name. To allow 
multiple occurrences of a variable in a pattern to be given consistent 
names, each time a variable is renamed, the new name is placed in an 
association list bound to the special variable *name-list*. The special 
declaration makes all references to the variable dynamic and shared among 
these functions. Thus, each access of *name-list* in rename will 
access the instance of *name-list* declared in rename-
variables. rename-variables initializes *name-list* to 
nil when it is first called on an expression. These functions are defined: 

(defun rename-variables (assertion) 

    (declare (special *name-list*)) 

    (setq *name-list* nil) 

    (rename-rec assertion)) 
 
(defun rename-rec (exp) 

    (declare (special *name-list*)) 

    (cond ((is-constant-p exp) exp) 

        ((varp exp) (rename exp)) 

        (t (cons (rename-rec (car exp)) 

          (rename-rec (cdr exp)))))) 

(defun rename (var) 

    (declare (special *name-list*)) 
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    (list ‘var (or (cdr (assoc var *name-list*  

        :test #’equal)) 

      (let ((name (gensym))) 

        (setq *name-list*  

          (acons var name *name-list*)) 

    name)))) 

The final functions access components of rules and goals and are self-
explanatory: 

(defun premise (rule) (nth 2 rule)) 

(defun conclusion (rule) (nth 4 rule)) 

(defun rulep (pattern) 

    (and (listp pattern) (equal (nth 0 pattern)  

         ‘rule))) 

(defun conjunctive-goal-p (goal) 

    (and (listp goal) (equal (car goal) ‘and))) 

(defun body (goal) (cdr goal)) 

In Chapter 17 we extend the ideas of Chapter 16 to delayed evaluation 
using lexical closures. Finally we build a goal-driven expert system shell in 
Lisp. 

                         Exercises 

 1. Expand the logic programming interpreter to include Lisp write 
statements. This will allow rules to print messages directly to the user. Hint: 
modify solve first to examine if a goal is a write statement. If it is, 
evaluate the write and return a stream containing the initial substitution 
set. 

2. Rewrite print-solutions in the logic programming interpreter so that it 
prints the first solution and waits for a user response (such as a carriage 
return) before printing the second solution. 

3. Implement the general map and filter functions, map-stream and 
filter-stream, described in Section 16.3. 

4. Expand the logic programming interpreter to include or and not 
relations. This will allow rules to contain more complex relationships 
between its premises. 

5. Expand the logic programming language to include arithmetic 
comparisons, =, <, and >. Hint: as 

in Exercise 1, modify solve to detect these comparisons before calling 
infer. If an expression is a comparison, replace any variables with their 
values and evaluate it. If it returns nil, solve should return the empty 
stream; if it returns non-nil, solve should return a stream containing 
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the initial substitution set. Assume that the expressions do not contain 
unbound variables.  

6. For a more challenging exercise, expand the logic programming 
interpreter to define = so that it will function like the Prolog is operator 
and assign a value to an unbound variable and simply do an equality test if 
all elements are bound. 

 

 


